

University of Asia Pacific (UAP)
Department of Computer Science and Engineering (CSE)
BSc in CSE Program

Course Outline – Microprocessors and Microcontrollers

Part A – Introduction

1. Course No. / Course Code: CSE 315

2. Course Title: Microprocessors and Microcontrollers

3. Course Type:

4. Level/Term and Section: 2nd Semester (3rd Year)

5. Academic Session: Spring 25

6. Course Instructor: A S Zaforullah Momtaz, Zaima Sartaj Taheri

7. Prerequisite (If any):

8. Credit Value: 3.0

9. Contact Hours: 3.0

10. Total Marks: 100

11. Course Objectives and Course Summary:

The objectives of this course are to:

1. Provide a thorough understanding of the architecture and operation of RISC/CISC-based microprocessors/microcontrollers.
2. Familiarize the students with the programming and interfacing of RISC/CISC-based microprocessors/microcontrollers.
3. Provide a strong foundation for designing real world applications using RISC/CISC-based microprocessors/microcontrollers.

This course introduces the fundamental aspects of microprocessors and microcontrollers. Students will learn the architectural concepts, instruction sets, addressing modes, and assembly programming of RISC and CISC-based systems. Topics include functional units, registers, memory organization, stack operations, and interfacing with I/O devices, sensors, timers, communication modules, and memory.

12. Course Learning Outcomes: at the end of the Course, the Student will be able to –

CLO 1	Explain the internal architecture and operational principles of RISC/CISC-based microprocessor/microcontrollers.
CLO 2	Explain the functional units, registers, memory organization, stack operations, instruction sets and addressing modes of RISC and CISC-based microprocessors and microcontrollers.
CLO 3	Demonstrate programming proficiency using the various addressing modes and data transfer instructions of the target RISC/CISC-based microprocessor/microcontrollers
CLO 4	Analyze the standards, performance requirements, and interfacing techniques to select and integrate appropriate RISC/CISC-based microprocessors/microcontrollers with input/output and peripheral devices.

13. Mapping / Alignment of CLOs with Program Learning Outcomes (PLO) (Optional):

CLO No.	Corresponding PLOs (Appendix-1)	Bloom's taxonomy domain/level (Appendix-2)	Delivery methods and activities	Assessment Tools
CLO1	a	1/Understand	Live/Recorded video Lecture, multimedia	Assignment, Written exam
CLO2	b	1/Apply	Live/Recorded video Lecture, multimedia	Quiz,
CLO3	c	1/Apply	Problem Solving	Quiz, Assignment
CLO4	c	1/Analyze	Live/Recorded video Lecture, multimedia	Quiz,

Part B – Content of the Course

14. Course Content:

15. Alignment of topics of the courses with CLOs:

SL. No	Topics / Content	Course Learning Outcome (CLO)
1	Introduction to Microprocessors and Microcontrollers	CLO1
2	Internal Architecture: Functional units, registers, buses, memory organization	CLO1, CLO2

3	Instruction Sets and Addressing Modes: Data transfer, arithmetic, logical, control instructions	CLO2
4	Assembly Language Programming: Programming using various addressing modes and instructions	CLO2, CLO3
5	Interfacing and Applications: I/O ports, timers, ADC/DAC, sensors, communication interfaces, keyboards, displays, actuators, and memory expansion	CLO4

16. Class Schedule/Lesson Plan/Weekly plan:

Topics	Specific Outcome(s)	Time Frame	Suggested Activities	Teaching Strategy(s)	Alignment with CLO
Introduction to Microprocessors and Microcontrollers, RISC vs. CISC Architectures, Applications in Embedded Systems	<ul style="list-style-type: none"> Explain the evolution and role of microprocessors and microcontrollers in embedded systems Differentiate between RISC and CISC architectures Identify real-world applications of 	Week 1	Case studies, introductory reading, class discussions, architecture	Lecture, multimedia	CLO1

	microprocessors and microcontrollers				
Internal Architecture and Functional Units of RISC/CISC-based Processors (Control Unit, ALU, Buses, etc.)	<ul style="list-style-type: none"> Describe the internal architecture and components of microprocessors and microcontrollers Explain the roles of the Control Unit, ALU, and system buses Interpret block diagrams of RISC and CISC-based processors 	Week 2	Diagram analysis, class discussions, short explanatory exercises	Lecture, multimedia	CLO1, CLO2
Functional Units and Registers (General-Purpose, Stack, Pointer, and Flag Registers), Memory Organization, Stack Operations, Logical vs. Physical Addressing, Address Translation, and Addressing Modes	<ul style="list-style-type: none"> Explain the role of different types of registers in microprocessors and microcontrollers Describe memory organization, stack structure, and stack operations Differentiate between logical and physical addressing and explain address translation Identify and apply various addressing modes used in instruction 	Week 3-5	Problem-solving tasks on register usage and stack operations, address translation exercises, addressing mode identification	Lecture, multimedia, problem solving, class discussions	CLO2

	execution				
--	-----------	--	--	--	--

Instruction Set Architecture: Data Transfer, Arithmetic, Logical, Bitwise, and Shift Operations; Instruction Flow Control: Conditional and Unconditional Branches, Loops, Calls, and Returns	<ul style="list-style-type: none"> Apply instruction set operations in assembly programming tasks Develop simple programs combining arithmetic, logical, and control flow instructions 	Week 6-7	Coding exercises, flow control programming tasks, class discussions	Lecture, Problem Solving, Group discussion	CLO2, CLO3
--	--	----------	---	--	------------

MID-TERM EXAMINATION

RISC/CISC Microcontroller Architecture and Core Registers: Features, Application Domains, and Roles of General-Purpose and Special Function Registers.	<ul style="list-style-type: none"> Explain the architecture and key features of RISC/CISC-based microcontrollers Identify and describe the roles of general-purpose and special function registers Relate microcontroller features to practical application domains 	Week 8-9	Diagram analysis, register identification exercises, case studies on applications	Lecture, multimedia	CLO1, CLO2
--	--	----------	---	---------------------	------------

I/O and Memory Addressing in Microcontrollers: I/O Ports, Data Direction Registers, and Memory Mapping Techniques	<ul style="list-style-type: none"> Explain the operation of I/O ports and Data Direction Registers in microcontrollers Describe memory mapping techniques and how memory and I/O are addressed 	Week 10	Memory mapping tasks	Lecture, multimedia	CLO1,CLO 2
Instruction Set and Addressing Modes in Microcontrollers	<ul style="list-style-type: none"> Explain the instruction set of microcontrollers and the function of each instruction type Identify and apply different addressing modes in programming 	Week 11-12	Addressing mode identification tasks, small assembly programs	Lecture, multimedia	CLO2, CLO3
Sensor and Device Integration in Embedded Systems: Interfacing Microcontrollers with ADCs, LCDs, Keypads, Motors, and Digital/Analog Sensors	<p>Explain techniques for interfacing microcontrollers with various sensors and devices</p> <ul style="list-style-type: none"> Demonstrate programming and control of ADCs, LCDs, keypads, motors, and analog/digital sensors 	Week 13-14	Scenario-based tasks involving sensor and device integration	Lecture, multimedia	CLO3, CLO4
FINAL EXAMINATION					

17. Teaching-Learning Strategies: Interactive Lectures, Google Classroom

18. Assessment Techniques of each topic of the course:

SL. No	Topics / Content	Assessment Techniques
1	Introduction to Microprocessors and Microcontrollers	Class Test, Assignment
2	Internal Architecture: Functional units, registers, buses, memory organization	Class Test, Written Exam
3	Instruction Sets and Addressing Modes: Data transfer, arithmetic, logical, control instructions	Class Test, Written Exam
4	Assembly Language Programming: Programming using various addressing modes and instructions	Class Test, Assignment, Written Exam
5	Interfacing and Applications: I/O ports, timers, ADC/DAC, sensors, communication interfaces, keyboards, displays, actuators, and memory expansion	Class Test, Written Exam

Part C – Assessment and Evaluation

19. Assessment Strategy

Class Tests: Altogether 3 class tests may be taken during the semester, 1 class tests will be taken for midterm and 2 class tests will be taken for final term. 2 out of 3 class tests will be considered. CT1, best of CT2 & CT3 will be considered. No makeup class tests will be taken. Students are strongly recommended not to miss any class tests.

Assignment: Assignment (Written and/or presentation.) will be given throughout the semester. Late submission will result in a 50% deduction in score. Students will have to do the presentation on the given topic as an assignment.

CIE- Continuous Internal Evaluation (30 Marks)

Bloom's Category Marks (out of 30)	Tests (20)	Assignments (10)
Remember		

Understand		
Apply		
Analyze		

Evaluate		
Create		

SMEB- Semester Mid & End Examination (70 Marks)

Bloom's Category	Test
Remember	
Understand	
Apply	
Analyze	
Evaluate	
Create	

Weighting COs with Assessment methods:

Assessment Type	Marks Distribution (%)	CO1	CO2	CO3	CO4	CO5
		PO1	PO3	PO3	PO2	PO3
Final Exam (50%)	Written Exam	50				
Mid Term (20%)	Written Exam	20		15	5	
Assessment (30%)	Assignment/ Presentation/Viva	10				

	Quiz	20					
Total		100%					

20. Evaluation Policy

Grades will be calculated as per the university grading structure and individual students will be evaluated based on the following criteria with respective weights.

1. Assessment 30%
2. Term Examination 50%
3. Mid-Term Examination 20%

UAP Grading Policy

Numeric Grade	Letter Grade	Grade Point
80% and above	A+	4.00
75% to less than 80%	A	3.75
70% to less than 75%	A-	3.50
65% to less than 70%	B+	3.25
60% to less than 65%	B	3.00
55% to less than 60%	B-	2.75
50% to less than 55%	C+	2.50
45% to less than 50%	C	2.25
40% to less than 45%	D	2.00
Less than 40%	F	0.00

Part D – Learning Resources

21. Text Book

1. Barry B. Brey, The Intel Microprocessors, Processor Architecture, Programming, and Interfacing, Eighth Edition, 2009, Prentice Hall

Reference Books & Materials

1. Assembly Language Programming and Organization of the IBM PC by Ytha Yu and Charles Marut.
2. C the complete reference by Herbert Schildt (4th edition)
3. Getting Started with Arduino" by Massimo Banzi 4th edition

4. Programming the ESP8266 with the Arduino IDE by Espressif Systems